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Physics-Based Modeling of the Co-Cure of 
Honeycomb Core Sandwich Structures

Long-Term Goal
Develop a physics-based model that allows assessment 
and optimization of co-cure for aerospace structures

Additional Goals
➢ Clarify and expand the community’s understanding 

of co-cure processes
➢ Develop diagnostic tools that enable process 

analysis and optimization
➢ Produce guidelines for successful co-cure of 

honeycomb sandwich structures
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Timeline
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WORK PACKAGE

WP1

1.1 Prepreg

1.2 Film Adhesive

1.3 Honeycomb Core (E+M)

WP2

2.1 Governing Equations

2.2 Lab-Scale Studies

WP3

3.1 Numerical Implementation

3.2 Lab-Scale Studies

3.3 Demonstrator Studies

WP4

4.1 Model Refinement

4.2 Demonstrator Studies

YEAR 1 YEAR 2 YEAR 3 YEAR 4

M1.1 ✓

M1.2 ✓

M1.3 ✓

M2.1

M3.1

M3.2

M2.2

M4.1

M3.1 Implement governing equations within numerical process simulation
M3.2 Validate numerical process simulation using demonstrator case studies
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Today’s Update

▪ Model Development – Facesheet Consolidation
▪ Modeling update

▪ Validation details

▪ Model Development – Permeability
▪ Modeling update

▪ Next Steps – Thoughts
▪ Porosity modeling

▪ Model integration

▪ Material implementation

▪ Validation
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Consolidation Problem

• Fiber Bed with Resin 
and Porosity f

• Fiber Volume Fraction 
vf

• Reference Frame 
Fixed to Fiber Bed

• Dissolved Volatiles 
Concentration c

Fiber Bed Deforms with 
Strain e

(Linear Strain May 
Suffice)

• Resin Flows Relative to 
Fiber Bed

• Volatiles Move Relative 
to Fiber Bed

• Volatiles Move Relative 
to Resin (Mobility 
Tensor U)

• Volatiles Dissolve in 
Resin

• Volatiles Diffuse, Too
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1D Consolidation Problem – Governing Eqs.
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ASSUMING INSTANT DISSOLUTION : 𝑐 = 𝐾ℎ𝑝

THE EQUATIONS FOR DISPLACEMENT, RESIN PRESSURE AND POROSITY ARE

P
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P
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P
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Momentum

Resin Conservation

Volatile Conservation
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Approach to Solution

• SOLVE FOR CONVENTIONAL COMPACTION WITHOUT POROSITY FOR CONSTANT 
MATERIAL PROPERTIES (FULLY IMPLICIT)

▪ FIRST TWO EQUATIONS ONLY

• ADD VARIABLE MODULI AND PERMEABILITY USING EXPLICIT CONSTANTS 
WITHOUT POROSITY TRANSPORT

▪ FIRST TWO EQUATIONS ONLY

• ADD POROSITY TRANSPORT BY STAGGERED SOLUTION AND EXPLICIT CORRECTION 
FACTOR IN PREVIOUS SOLUTION

▪ IN PROGRESS
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Transient Solution for Non-Lin. Material (Time Step)

Linear Case
𝑢
𝑝

𝑛+1

= 𝑲−1. 𝑭
𝑢
𝑝

𝑛

F is Linear

Non-Linear Case
𝑢
𝑝

𝑛+1

= 𝑲−1
𝑢
𝑝

𝑛

. 𝑭
𝑢
𝑝

𝑛

u: Radial Displacement
p: Resin Pressure

Without Porosity Transport

Linear Material Allows Implicit Formulation.

Non-Linear Material and 1st Order Euler Time 
Stepping Suitability (No Real Time Step Limits):
1. Kožený Karmán Permeability
2. Linear Modulus of Elasticity
3. Non-Linear Modulus of Elasticity by 

Gutowski (Sandwich) 

The Same with TVD-RK3 Time Stepping
1. Quadratic Modulus of Elasticity Works 

Without Time Limits

Non-Linear Approach Does Not Work (Or with 
Unbearable Time Limits):
1. Cubic Modulus of Elasticity
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Material Non-Linearity: Transverse Modulus

Theoretical Stress-Strain Curve(s)

Modulus:
Linear

Quadratic
Cubic

Same Initial Modulus

Same Deformation at 1 Mpa
(10%)

Constant Modulus

Measured Stress-Strain Curve

Notes: 
1. Compaction Work at UD Involved Glass 

Preforms
2. Higher Non-Linearity Complicates Numerics
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Sample Panel Comparison Details: Material Model

• Prepreg Data Came from 
Different Material
▪ Low Pressure (We went to 377 

kPa in Comparison Panels)

▪ More Modest Fiber Content (53-
59%)

• Fit Modified to Stress-Strain 
Form
▪ Works OK in the Code as Is

▪ Non-Linearity not Very Strong

▪ Similar to Linear Modulus 
Dependency

▪ May be OK for Co-Cure as the 
Pressure is Limited
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Other Material Data Used in “Comparison”

p = 𝑝𝑐𝑜𝑟𝑒
𝑢′ = 0

𝐸𝑟𝑢′ − 𝑝 = −𝑝𝑎𝑝𝑝
𝑝 = 𝑝𝑏𝑎𝑔

Thickness=2 mm
Outer Radius = 15 mm
Tangential Modulus = 1 Gpa
Transverse Modulus Nonlinear
Fiber Volume Fraction ~ 0.53
Permeability 1x10-14 m2, Kozeny-Karman
Viscosity = 10 Pa.s

Case 1 Case 2 Case 3

Pbag O kPa 101 kPa 239 kPa

Papp 377 kPa 377 kPa 377 kPa

Pcore 0 kPa 101 kPa 239 kPa

Applied Pressures

Notes
• Viscosity Could Be Used Transient, But 

this is Good “Representative” Value
• Tangential Modulus (Prepreg In-Plane 

Stretching) is Speculative
• Permeability is “In Ball Park”
• Kozeny-Karman is Commonly Used as It 

Needs Only One Data Point
• Radius Obtained From Expected 

Dimpling
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Comparison Details: Good Qualitative Agreement

Is the Solubility the ONLY Key?
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Comparison Details: Reasonable Qualit. Agreement

No Clear Trend in the Experiment
Are Voids “Toward” Core?! Low Resin Pressure
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Permeability Model: Planned Work

Gas Transport Experiments (Controlled Conditions)

▪ Variables

▪ Ply count

▪ Compaction pressure

▪ Resin viscosity

▪ Measured values

▪ Gas flow rate

▪ Facesheet thickness?

▪ Other considerations
▪ Boundaries: release film, adhesive layer

▪ Kx, Ky

▪ Material: 8552, 5320-1?

Fitting to Standalone Model

Integrating With Other Submodels

Compaction Model

Permeability Model

Mass Balance Model
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Technical Questions

Equilibrated Core

▪ How can we improve the accuracy of porosity
modeling?

▪ Void nucleation (currently not considered)

▪ Void growth (reasonable first-pass agreement)

▪ Void rupture and/or migration (highly stochastic)

▪ Is the coupling between facesheet consolidation and 
bond-line formation essential for predictive 
modeling?

▪ Resin bleed can lead to thicker bond-line, larger fillets, 
and more porosity

▪ Is the model accurate for OoA/VBO prepregs with 
low degrees of impregnation?

▪ What are the next steps for validation?

Sealed Core

▪ How do we develop an accurate but useable model 
for prepreg permeability during cure?

▪ How do we reconcile prepreg permeability and 
facesheet consolidation?
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Porosity Formation

Next Step: Growth/Shrinkage Transition
➢ Models can be developed for adhesive and prepreg resins.
➢ Prediction of growth/shrinkage transition can be validated 

and used to estimate bond-line quality.

1 mm

Temperature

P
re

ss
u

re

Resin 1

Resin 2
Voids grow

Voids shrink

(or don’t grow)

𝑃𝑐𝑜𝑟𝑒

Experimental Data
➢ In situ visuals
➢ TGA
➢ Vacuum oven (mass loss)

Model
➢ Void growth/shrinkage
➢ Void nucleation (if needed)

Current State
Model predicts transition at
approximately 100 kPa (for
adhesive). Tests show that voids
in bond-line require > 200 kPa
to suppress.
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Facesheet/Bond-Line Coupling

0.5 mm

C
A

SE
 I

C
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SE
 II

C
A

SE
 II

I

Visual Observations Fillet Formation

In Situ: Fillet formation, little 
void growth

Polished Section: Fillets are 
well-formed, few/no voids

Measured: Fillet height measured for 
approx. 40 fillets, with large STDEV noted

Model: Analytical model solved using 
known/assumed parameters

Model Results:
➢ Model deviation from 2% – 32%
➢ Sources of error: void formation, carrier, 

resin bleed from prepreg

In Situ: Fillet formation, void 
growth and entrapment

Polished Section: Large fillets, 
many entrapped voids

In Situ: Fillet formation, void 
growth/rupture

Polished Section: Small, 
irregular fillets with some 
entrapped voids
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Notes
➢ Simple analytical model over-

predicts fillet height, but remains 
accurate to within about 15% 
(average).

➢ To account for resin bleed, the 
model needs to be revised:
• Resin mass as input
• Multiple material properties
• Time history dependence

➢ How accurate does the prediction 
of fillet size need to be, given 
practical factors and variability?
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OoA/VBO Prepreg

Autoclave
➢ Fiber bed is fully saturated with 

resin on delivery.
➢ Consolidation modeling is easier 

due to uniformity.
➢ Material: Hexcel 8552S

Out-of-Autoclave
➢ Fiber bed is not fully saturated with 

resin due to dry tows
➢ Consolidation modeling is more 

challenging due to partial 
saturation, non-uniformity

➢ Material: Cytec 5320-1

8552S 5320-1

Questions
➢ How accurate (or not) is the model for 5320-1?
➢ Can we decouple tow impregnation from the current consolidation model?
➢ How do we account for permeability evolution?
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Validation

▪ Case I: Equilibrated Core (𝑃𝑐𝑜𝑟𝑒 = 0 kPa)
▪ Sub-Models: Fillet formation, porosity formation

▪ Focus: Current

▪ Case II: Equilibrated Core (𝑃𝑐𝑜𝑟𝑒 = 101.3 kPa)
▪ Sub-Models: Fillet formation, porosity formation

▪ Focus: Current

▪ Case III: Equilibrated Core (𝑃𝑐𝑜𝑟𝑒 = 240 kPa)
▪ Sub-Models: Fillet formation, porosity formation

▪ Focus: Current

▪ Case IV: Sealed Core (Realistic Pressure Evolution)
▪ Sub-Models: Cases I – III + core pressure

▪ Focus: Upcoming (requires facesheet permeability)

▪ Cases V+: Parts with Defined Geometry
▪ Sub-Models: Case IV + 2D geometry

▪ Focus: After Cases I – IV are validated

Current Validation Tasks
• Improve methods for collecting test data 

(esp. for facesheet properties)
• Refine models (equations, inputs) to 

improve accuracy of fillet formation, 
porosity evolution, and facesheet 
consolidation sub-models.

Next Steps
• Prepare additional samples to assess 

variability.
• Perform validation on external samples 

(e.g., UTRC test data).



Acknowledgements

Funding: NASA Langley Research Center
NRA NNL16AA13C
Roberto Cano

Technical Input: NASA Advanced Composites Project

Shaahin Amini, Wenping Zhao, John Gangloff 
(UTAS/UTRC)

Materials: Cytec Solvay (Scott Lucas, Steve Howard)

Hexcel (Gordon Emmerson, Yen Wang)
Henkel (David Leach)
Airtech International (Gerry Jackson)

20


