

PROCESS MODELING OF THE CO-CURE OF HONEYCOMB CORE SANDWICH STRUCTURES

Prof. Steven Nutt et al. University of Southern California

Prof. Suresh Advani et al. University of Delaware

Monthly Formal Teleconference 30 March 2018

Project Overview

Physics-Based Modeling of the Co-Cure of Honeycomb Core Sandwich Structures

Long-Term Goal

M.C. Gill Composites Center

/iterbi

Develop a physics-based model that allows assessment and optimization of co-cure for aerospace structures

Additional Goals

- Clarify and expand the community's understanding of co-cure processes
- Develop diagnostic tools that enable process analysis and optimization
- Produce guidelines for successful co-cure of honeycomb sandwich structures

Steven Nutt Professor, PI

Timotei Centea Research Asst. Professor, Co-I

PhD Student

Daniel Zebrine PhD Student

Suresh Advani Professor, Pl

Pavel Simacek Research Associate

Navid Niknafs PhD Student

Timeline

	WORK PACKAGE		YEAR 1				YEAR 2			YEAR 3			YEAR 4				
Phase I	WP1																
	1.1 Prepreg	\checkmark	\checkmark	\checkmark	\checkmark	Μ	1.1 🗸										
	1.2 Film Adhesive	\checkmark	\checkmark	\checkmark	\checkmark	М	1.2 🗸										
	1.3 Honeycomb Core (E+M)	\checkmark	\checkmark	M1	.3 🗸												
	WP2																
	2.1 Governing Equations	\checkmark		М	2.1												
	2.2 Lab-Scale Studies	\checkmark	М	2.2													
Phase II	WP3																
	3.1 Numerical Implementation			\checkmark			M3	.1									
	3.2 Lab-Scale Studies									\checkmark	\checkmark						
	3.3 Demonstrator Studies													MB	.2		
	WP4																
	4.1 Model Refinement															M	4.1
	4.2 Demonstrator Studies																

M3.1 Implement governing equations within numerical process simulationM3.2 Validate numerical process simulation using demonstrator case studies

Today's Update

- Model Development Facesheet Consolidation
 - Modeling update
 - Validation details
- Model Development Permeability
 - Modeling update
- Next Steps Thoughts
 - Porosity modeling
 - Model integration
 - Material implementation
 - Validation

Consolidation Problem

- Resin Flows Relative to Fiber Bed
- Volatiles Move Relative to Fiber Bed
- Volatiles Move Relative to Resin (Mobility Tensor U)
- Volatiles Dissolve in Resin
- Volatiles Diffuse, Too

• Fiber Bed with Resin and Porosity f

- Fiber Volume Fraction
- *v_f* Reference Frame Fixed to Fiber Bed
- Dissolved Volatiles Concentration c

Strain e

Fiber Bed Deforms with

(Linear Strain May Suffice)

r

ASSUMING INSTANT DISSOLUTION : $c = K_h p$

THE EQUATIONS FOR DISPLACEMENT, RESIN PRESSURE AND POROSITY ARE

Momentum

$$E_{r}.u' - E_{t}\frac{u}{r} + r(E_{r}.u' - p)' = 0$$
Resin Conservation

$$\frac{\partial u/\partial t}{r} + \frac{\partial u'}{\partial t} - \frac{\partial \varphi}{\partial t} = \frac{1}{r}\left(r\left(\frac{K}{\eta}p'\right)\left(1 - \frac{\varphi}{1 - v_{f}}\right)\right)'$$
P_c
Volatile Conservation

$$m_{m}\frac{\partial\left(\frac{p\varphi}{RT}\right)}{\partial t} + \frac{\partial\left(K_{h}\rho p(1 - v_{f} - \varphi)\right)}{\partial t} = \frac{1}{r}\left(rU\frac{K}{\eta}p'm_{m}\frac{p\varphi}{RT}\right)' + \frac{1}{r}(rJK_{h}p')'$$

- SOLVE FOR CONVENTIONAL COMPACTION WITHOUT POROSITY FOR CONSTANT MATERIAL PROPERTIES (FULLY IMPLICIT)
 - FIRST TWO EQUATIONS ONLY
- ADD VARIABLE MODULI AND PERMEABILITY USING EXPLICIT CONSTANTS
 WITHOUT POROSITY TRANSPORT
 - FIRST TWO EQUATIONS ONLY
- ADD POROSITY TRANSPORT BY STAGGERED SOLUTION AND EXPLICIT CORRECTION FACTOR IN PREVIOUS SOLUTION
 - IN PROGRESS

Linear Case

$$\begin{bmatrix} u \\ p \end{bmatrix}^{n+1} = K^{-1} \cdot F\left(\begin{bmatrix} u \\ p \end{bmatrix}^n \right)$$

F is Linear

$$\begin{bmatrix} u \\ p \end{bmatrix}^{n+1} = K^{-1} \left(\begin{bmatrix} u \\ p \end{bmatrix}^n \right) \cdot F \left(\begin{bmatrix} u \\ p \end{bmatrix}^n \right)$$

u: Radial Displacement p: Resin Pressure

Without Porosity Transport

Linear Material Allows Implicit Formulation.

Non-Linear Material and 1st Order Euler Time Stepping Suitability (No Real Time Step Limits):

- 1. Kožený Karmán Permeability
- 2. Linear Modulus of Elasticity
- 3. Non-Linear Modulus of Elasticity by Gutowski (Sandwich)

The Same with TVD-RK3 Time Stepping

1. Quadratic Modulus of Elasticity Works Without Time Limits

Non-Linear Approach Does Not Work (Or with Unbearable Time Limits):

1. Cubic Modulus of Elasticity

USC

Viterbi

9

Theoretical Stress-Strain Curve(s)

Notes: 1. Compaction Work at UD Involved Glass Preforms 2. Higher Non-Linearity Complicates Numerics

Measured Stress-Strain Curve

USC Viterbi

M.C. Gill Composites Center

Sample Panel Comparison Details: Material Model

- Prepreg Data Came from Different Material
 - Low Pressure (We went to 377 kPa in Comparison Panels)
 - More Modest Fiber Content (53-59%)
- Fit Modified to Stress-Strain Form
 - Works OK in the Code as Is
 - Non-Linearity not Very Strong
 - Similar to Linear Modulus Dependency
 - May be OK for Co-Cure as the Pressure is Limited

Thickness=2 mm Outer Radius = 15 mm Tangential Modulus = 1 Gpa Transverse Modulus Nonlinear Fiber Volume Fraction ~ 0.53 Permeability 1x10⁻¹⁴ m², Kozeny-Karman Viscosity = 10 Pa.s

Applied Pressures

	Case 1	Case 2	Case 3
P _{bag}	O kPa	101 kPa	239 kPa
P _{app}	377 kPa	377 kPa	377 kPa
P _{core}	0 kPa	101 kPa	239 kPa

Notes

- Viscosity Could Be Used Transient, But this is Good "Representative" Value
- Tangential Modulus (Prepreg In-Plane Stretching) is Speculative
- Permeability is "In Ball Park"
- Kozeny-Karman is Commonly Used as It Needs Only One Data Point
- Radius Obtained From Expected Dimpling

USC

Viterbi

Comparison Details: Good Qualitative Agreement

Is the Solubility the ONLY Key?

USC

Viterbi

Comparison Details: Reasonable Qualit. Agreement

No Clear Trend in the Experiment Are Voids "Toward" Core?!

Low Resin Pressure

Gas Transport Experiments (Controlled Conditions)

- Variables
 - Ply count
 - Compaction pressure
 - Resin viscosity
- Measured values
 - Gas flow rate
 - Facesheet thickness?
- Other considerations
 - Boundaries: release film, adhesive layer
 - K_x, K_y
 - Material: 8552, 5320-1?

Fitting to Standalone Model

Technical Questions

Equilibrated Core

M.C. Gill Composites Center

- How can we improve the accuracy of <u>porosity</u> modeling?
 - Void nucleation (currently not considered)
 - Void growth (reasonable first-pass agreement)
 - Void rupture and/or migration (highly stochastic)
- Is the <u>coupling</u> between facesheet consolidation and bond-line formation essential for predictive modeling?
 - Resin bleed can lead to thicker bond-line, larger fillets, and more porosity
- Is the model accurate for <u>OoA/VBO prepregs</u> with low degrees of impregnation?
- What are the next steps for <u>validation</u>?

Sealed Core

- How do we develop an accurate but useable model for prepreg permeability during cure?
- How do we reconcile prepreg permeability and facesheet consolidation?

Porosity Formation

Next Step: Growth/Shrinkage Transition

- Models can be developed for adhesive and prepreg resins. \succ
- Prediction of growth/shrinkage transition can be validated \geq and used to estimate bond-line quality.

M.C. Gill Composites Center

Experimental Data

- In situ visuals
- Vacuum oven (mass loss)
- Void growth/shrinkage
- Void nucleation (if needed)

Current State

Model predicts transition at approximately 100 kPa (for adhesive). Tests show that voids in bond-line require > 200 kPa to suppress.

Facesheet/Bond-Line Coupling

	Visual Observations	Fillet Formation	Notes
	<u>In Situ</u> : Fillet formation, little void growth	<u>Measured</u> : Fillet height measured for approx. 40 fillets, with large STDEV noted	Simple analytical model over- predicts fillet height, but remains accurate to within about 15%
CASE	Polished Section: Fillets are well-formed, few/no voids	Model: Analytical model solved using known/assumed parameters	 (average). ➤ To account for resin bleed, the model peeds to be revised.
an a filo an an anti a tha an a' a da an a		Model Results:	Resin mass as input
	<u>In Situ</u> : Fillet formation, void growth and entrapment	 Sources of error: void formation, carrier, resin bleed from prepreg 	 Multiple material properties Time history dependence
CASE	Polished Section: Large fillets, many entrapped voids	1.2	How accurate does the prediction of fillet size need to be, given practical factors and variability?
	<u>In Situ</u> : Fillet formation, void growth/rupture		
CASE	Polished Section: Small, irregular fillets with some entrapped voids	0.2 0 Vacuum Ambient Pressurized	
USC			
Viterbi		17	

OoA/VBO Prepreg

Autoclave

M.C.Gill Composites Center

USC

Viterbi

- Fiber bed is fully saturated with resin on delivery.
- Consolidation modeling is easier due to uniformity.
- ➢ <u>Material</u>: Hexcel 8552S

Out-of-Autoclave

- Fiber bed is not fully saturated with resin due to dry tows
- Consolidation modeling is more challenging due to partial saturation, non-uniformity
- Material: Cytec 5320-1

Questions

- How accurate (or not) is the model for 5320-1?
- Can we decouple tow impregnation from the current consolidation model?
- How do we account for permeability evolution?

Validation

- **Case I:** Equilibrated Core ($P_{core} = 0$ kPa)
 - Sub-Models: Fillet formation, porosity formation
 - Focus: Current
- **Case II:** Equilibrated Core ($P_{core} = 101.3$ kPa)
 - Sub-Models: Fillet formation, porosity formation
 - Focus: Current
- **Case III:** Equilibrated Core ($P_{core} = 240$ kPa)
 - Sub-Models: Fillet formation, porosity formation
 - Focus: Current
- Case IV: Sealed Core (Realistic Pressure Evolution)
 - Sub-Models: *Cases I III + core pressure*
 - Focus: Upcoming (requires facesheet permeability)
- Cases V+: Parts with Defined Geometry
 - Sub-Models: Case IV + <u>2D geometry</u>
 - Focus: After Cases I IV are validated

Current Validation Tasks

- <u>Improve methods</u> for collecting test data (esp. for facesheet properties)
- <u>Refine models</u> (equations, inputs) to improve accuracy of fillet formation, porosity evolution, and facesheet consolidation sub-models.

Next Steps

- Prepare additional samples to assess variability.
- Perform validation on external samples
- (e.g., UTRC test data).

Acknowledgements

Funding:

NASA Langley Research Center NRA NNL16AA13C Roberto Cano

Technical Input:NASA Advanced Composites ProjectShaahin Amini, Wenping Zhao, John Gangloff
(UTAS/UTRC)

Materials:

Cytec Solvay (Scott Lucas, Steve Howard) Hexcel (Gordon Emmerson, Yen Wang) Henkel (David Leach) Airtech International (Gerry Jackson)

